金融科技有助防范化解系统性金融风险
◇方意 陈经华
防范与化解系统性金融风险是经济和金融体系的重要问题,尤其是在信息科技高速发展的今天,对系统性风险进行合理有效的测度成为防范与化解系统性风险的基本前提。由于数据覆盖范围小、更新频率低等缺陷,传统方法在监测范围、监测频率、监测及时性、可信度等方面还存在局限性。随着大数据、人工智能与各行业的深度融合,金融科技因其监测频率高、覆盖范围广、数据来源广泛、真实可信、模型预测性强等诸多特点,在系统性风险防范和化解领域的优势日益凸显。
传统方法精准把握风险难度增加
系统性金融风险的测度,以金融机构之间的关联性为重点,刻画负向冲击时金融机构间因关联而产生的传染风险。因数据和方法的差异,系统性金融风险的传统测度模型大致分为两类:一是利用金融市场数据的模型,如尾部依赖模型、溢出指数模型;二是利用金融机构资产负债表的网络模型。
第一,金融市场数据的模型侧重于度量不同压力环境下金融市场的整体收益与机构收益之间的关联。其中,尾部依赖模型主要使用机构个体对系统的重要性、系统对个体机构的影响,以及金融系统处于压力状态下个体金融机构资本金短缺情况三类指标给出系统性风险的水平。而溢出指数模型考虑系统整体的依赖,主要通过构建向量自回归,利用预测误差方差分解结果,构建各金融市场、金融机构间的溢出指数,进而计算系统脆弱性和系统重要性等指标。